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The two-dimensional steady low of an incompressible viscous fluid past a circular
cylinder, placed symmetrically in a simple shear field, has been studied for both
the stationary and the freely rotating case by solving numerically the Navier—
Stokes equations for values of the Reynolds number R in the range

0-047 < R < 70.

At R = 0-047, the present results are in substantial agreement with the analytic
small-R perturbation solution given by Robertson & Acrivos (1970). Inertia
effects were found, however, to play a significant role even at B = 1, and hence
the calculated flow pattern for R > 1 differs significantly from that of the
creeping-flow solution. Specifically, for the freely rotating case, the region of
closed streamlines decreases rapidly in extent with increasing B, two sym-
metrically placed wakes are formed on either side of the cylinder and the dimen-
sionless rotational speed of the freely suspended cylinder decreases as B~%. In
fact, for a value of R as low as 70, many of the gross features of the flow are
surprisingly similar to those described by an inviscid solution except for the
difference in the two sets of pressure profiles and the fact that the numerical
results do not as yet exhibit the expected flow separation on the surface of the
cylinder.

1. Introduction

Problems involving the motion of small spheres and cylinders freely suspended
in a non-uniform flow field have received considerable attention in the last few
years, not only because of their importance from a fundamental point of view,
but also because their solution constitutes the first step in understanding many
complex phenomena such as the flow of red cells in the blood and of fibre suspen-
sions in paper making, the lateral migration of solid as well as deformable particles
suspended in Poiseuille flow, the rheology of emulsions and the associated problem
of mass transfer between the continuous and discrete phases, plus many more.
Up to now, however, most of the studies on the subject, experimental as well as
theoretical, appear to have been limited to small values of the Reynolds number,
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Fioure 1. The undisturbed simple shear flow and the location
of the eylinder in the flow field.

the result being that many of the effects arising from the presence of large inertia
forces have remained unexplored. Here we attempt to fill this void for the case
of a circular cylinder freely suspended in a simple shear flow, by presenting
numerical solutions to the Navier—Stokes equations for values of the shear
Reynolds number up to 70.

The system to be considered, shown schematically in figure 1, consists of a
circular cylinder of radius ¢ placed symmetrically in a simple shear flow whose
rate of strain is denoted by 8. The Reynolds number R is defined as R = Sa?/v,
with » the kinematic viscosity of the fluid, and all velocities and lengths are
rendered dimensionless using, respectively, Se as the characteristic velocity and
@ as the characteristic length. Thus, the steady flow obeys the familiar dimen-
sionless Navier-Stokes equations in terms of the stream function 1 and the
vorticity o

V&) = ~w, Dw[Dt= RV, (1.1)
plus the boundary conditions
2
Yp=0 at r=1;, O=w+1->0, ;gﬁz 7—1;(1ﬁ—%sin26)—+0 as r-> o0,

(1.2)
as well as the periodicity condition

{(r,0), o(r,0)} = {f(r,0+m), o(r, 0 +m)}, (1.3)

which arises from the symmetry of the flow. In the above, » and 6 are the con-
ventional cylindrical polar co-ordinates, with # increasing counter-clockwise as
shown in figure 1. Finally, the requirement of zero torque can be shown to
reduce to .

1
Q=t-5|

ol

o(r, ) do, (1.4)

Q = —u, = oY/orat r = 1 being the dimensionless speed with which the cylinder
rotates.
The creeping-flow solution to the above, given by

Yo = $r¥sin?0— L1+ (r2—2)cos 20}, Q =1}, (1.5)
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is well known, and the predicted flow pattern has been verified experimentally,
for small values of R, by Cox, Zia & Mason (1968) and by Robertson & Acrivos
(1970). For larger R, however, essentially nothing has been reported to date
regarding the structure of the flow, except for the analysis by Robertson &
Acrivos (1970), where a solution to (1.1)—(1.3) was developed for small but finite R.
This was accomplished using the technique of matched asymptotic expansions,
which led to the following two expressions for the stream function ¥ satisfying
the appropriate matching requirement in the overlap region.
(@) An ‘inner’ solution for 1 < r < O(R~1):

¥ = Yro(r, 0) + Rln Ry (7, 0) + Rifry(r, 0) + o( B), (1.6)

where analytic formulae were given by Robertson & Acrivos for the functions i,
and r,.
(b) An ‘outer’ solution for O(R-%) < r < o0 of the form

Ry = 1p?sin?0+ RY¥(p,0)+O(R?*In R), p = Rbr,
when ¥(p, 0) is the solution to

v _Rep, V2w —_6, (X,7)= (Rla,Rly), =—t e

oX ’ ’ ’ D X2 oy’
which matches with (1.6) and satisfies the last two conditions in (1.2) as p — oo.
Moreover, it was shown by Robertson & Acrivos that, for a freely rotating

cylinder, Q = 1{1—0-2886R + O(R*In R)}. (1.8)

It is recognized, of course, that the above expressions, being expansions of the
appropriate exact solution about B = 0, may not provide a reliable description
ofthe flow beyond a certain small value of B. Nevertheless, they do suggest certain
trends in the evolution of the flow pattern with increasing R which, as will be
seen later, are borne out to a surprising extent by the numerical solution even
for R as large as 70.

Specifically, if (1.6), the stream function for the ‘inner’ solution, is evaluated
for R = 0-047, the resulting streamline pattern, depicted in figure 2, is seen to
differ significantly from that arising from the creeping-flow solution (1.5) (cf.
figures 8 and 9 of Robertson & Acrivos). For example, the region of closed stream-
lines, which is known to dominate the rate of heat or mass transfer from the
cylinder at large values of the Péclet number (Frankel & Acrivos 1968), is now
finite rather than infinite in extent and is followed, on either side, by a wake,
i.e. a region of negative i, whose width is monotonically increasing with »; in
fact, the pattern is qualitatively similar to that arising under creeping-flow
conditions when the cylinder is in a state of hindered rotation, i.e. when Q < 1
(ef. figure 7 of Robertson & Acrivos). It is moreover evident from (1.8) that,
according to the perturbation solution, €2 should be expected to decrease mono-
tonically with R and to become small in relation to the vorticity of the undisturbed
shear flow when Risnot much larger than O(1). Thus, the analysis by Robertson &
Acrivos would tend to indicate that, even for moderate values of R, the flow will
be dominated by inertia effects and that its structure will bear little resemblance
to that of the B = 0 solution as given by (1.5).

1.7)
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Ficurg 2. Stream-function field for zero torque, B = 0-047 and Q = 0-49316,
obtained analytically from the inner solution.

It is also of some interest to solve the inviscid form of (1.1) in the hope that at
least some of the features of this solution will be retained by the true streamline
pattern when R > 1. With the viscous terms in (1.1) set, then, identically equal
to zero, this pair of equations reduces to

w=—1=~Va,
whose solution satisfying (1.2) is
¥ = }r2sin?0 -1 —blnr+ (4r2)~tcos 26, (1.9)

b being a constant. To obtain its value, as well as that of Q, it is necessary to
examine the boundary-layer equations, which describe the flow in the immediate
vieinity of the cylinder, subject to the conditions

wp=—Q at r=1, wy—>uy(f) attheedge ofthe boundary layer,

where, in view of (1.9),
UL, () = cos 20— (3 —b).

Fortunately, a solution, which would be cumbersome to obtain, is not required
in the present case, because the symmetric flow about 6 = 0, obtained by setting
b = }, automatically satisfies the zero-torque condition (1.4) with Q = 0. To be
sure, it is unlikely that this inviscid solution, which is sketched in figure 3,
correctly represents the true flow pattern at high R, since a conventional
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Ficure 3. The inviseid solution (1.9) with b = 3.

boundary-layer calculation with Q = 0 and u,(f) = cos 20 = sin (26 + i7) leads
to the prediction (cf. Schlichting 1968, p. 161) that the boundary layer will
separate at @ = 45° + 36°, Nevertheless, it is of some interest that the gross
features of this solution, for example a zero value for Q, plus the presence of two
wakes whose width increases logarithmically with r, are consistent with the
trends predicted by the small-R analysis discussed above.

On the basis of both the small-R and the inviscid solutions, one would expect
therefore that, with increasing R, Q should decrease monotonically to zero and
that a wake, qualitatively similar to that shown in figure 3, should form, extending
from almost the surface of the eylinder to infinity. It will be seen that, indeed, the
numerical calculations are in accord with these predictions.

2. The numerical technique

Before proceeding with the description of our numerical technique for solving
(1.1) subject to (1.2)—(1.4), it is of some importance to examine in more detail the
expected behaviour of the solution as r —o0. To this end we note that, far from
the cylinder, the function & = w + 1 satisfies the first relation in (1.7), whose
fundamental solution vanishing at infinity is (Bretherton 1962)

® dt (X—1Y¢)? Y2
8= s "\ i T
o 26(1+55t%)2 H1+458%) 4
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with{— ~Inp+1-372asp = (X2 + Y?)i > 0. A vorticity distribution of the form
@ = Ay, with 4, a proportionality constant, will arise then from a source of
vorticity at the surface of the cylinder. One can easily show by application of the
divergence theorem to the vorticity equationsin (1.1) and (1.7) plus knowledge of
the form of § as p — 0 that

1 [ (8@

Ay =—=— —
0 2m Jo 87‘),:1 49,
which is clearly zero. Therefore, since & must, in addition, satisfy the periodicity
condition (1.3), we conclude that far from the cylinder
0> A4,0%[0X? as r-> o0,

A, being an undetermined constant.
It has already been shown by Bretherton (1962), however, that, as r — 0,

£ 3 Y210(Y-4) if XY =O0(1)

and ¢~ (3YXHI()+0(X-%) if a=Y/X=0(1),
4 a
Wit’h I(a) = _l:ga_) e%as —_— %e%aa e_%ts dt,
3 o

and thus, in the present case, @ remains significant only within a ‘vorticity * wake
of dimensions ¥ = O(X%), where

B = (384,/27X3) {(Jaf + 10 + 30) I — (3ot + 8ar)}. (2.2)

The term in braces has a maximum at a = 245 and hence, for a given large z,
& will attain its largest absolute value, proportional to 2—3, when

Y = Ymax = 2:4523 | R%. (2.3)

It is evident, of course, that the above conclusions apply irrespective of the
magnitude of R, provided that « is sufficiently large.

It is also clear from (2.2) that, for fixed r, the change in the stream function
across the vorticity wake will be O(r—2) as r —> co, and hence, for purposes of
determining ¥ far from the cylinder, the presence of this wake can be ignored.
Thus, as r — o0, ¢ satisfies Laplace’s equation and, in view of (1.2) and (1.3),
assumes the form

- 3r?sin?0 + Binr+ 4+ 0(1), (2.4)

where it can be shown, by integrating the first equation in (1.1) with respect to 8
from —i7m to {7 and applying (1.2) to the solution of the resulting ordinary
differential equation, that

b r

® 37

git)dt, A= —f glntdt—-%, with g¢(r) = ——T—Tf . O(r, 8)do.
1 ~ 47

(2.5)

PR

1

We note that 4 and B exist, since, in view of (2.2), g becomes O(r—3) as r — c0.
We next outline the method of solution. After the customary change of
variables from (r, #) to (£,%), with

E=altlnr, 5 =0/nm,
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the pair of equations (1.1), in terms of the ‘deviatoric’ dependent variables (i) and
&, T was cast into a finite-difference form using standard formulae of second-order
accuracy except as noted in § 3, with boundary conditions

(@) $1; = —sinay,, (2.6)
A . 2 . . 2 .
(b) &y; = (1—2sin7y;)— T [¥y; + & sin?7ry;] +o (Q—sin%my;),t (2.7)
(¢) @,; =0, where £ is the location of the artificial outer boundary,  (2.8)
(d) g = Brt,, + 4, (2.9)
where 4 and B were calculated from (2.5), imd

(e) the periodicity requirement (1.3) on ¢ and &.
Thus, in matrix notation, (1.1) becomes

H+V) =T, (2.10)

together with a similar expression for the vorticity equation, where H J) and V(i)
are, respectively, the finite-difference approximations to &2}/on2 and 62 /o2,
and f is the forcing matrix containing &, as well as the boundary conditions. With
f assumed known, (2.10) was then solved using the alternating direction implicit
(ADI) iteration scheme (Wachspress 1966, p. 173), according to which

'j)v+1 — (?)v + Sv+1,
the residue §*+! being computed from
(H+th)S* =—(H+V)(i)"+f, (v+7vl)su+1= (7h+7v)ls*7 (2'11)

where v is the iteration index, I is the unit matrix and y, and y,, are acceleration
parameters. A set of four ADI parameters was employed in the cyclical manner.

After calculating a convergent solution for :2) corresponding to a given vorticity
distribution, an improved vorticity field was obtained from the finite-difference
form of the vorticity equation in (1.1) using a single successive over-relaxation
(SOR) pass per overall iteration. Specifically, the new field was determined one
column at a time, i.e., with S again denoting the residual and equal to, in this case,
®ev — @4, 8, was computed for all ¢ at a given j. The vorticity was calculated
a column at a time (constant j) and the field swept in the direction of flow
(increasing j). Also, in keeping with the standard practice in SOR iterations, new
information was continuously fed into the calculations in that, when computing
the jth vorticity column during a given pass, the vorticity in the (j— 1)th column
was replaced by

Oy + B8, 51

S was set equal to 1-2 in all cases except when R = 70, where, to maintain
stability, it was reduced to 0-05. Finally, the ‘new’ vorticity field was obtained
from Guew — (:)old+aS;
the values of the relaxation parameter « that were used are listed in table 1.

T 1,&“ = g&(gi, n;)and @;; = O(&;,n;), where §; = (i—1)kand 9; = (f — 1) h, k and k being the
grid spacings in the £ and 5 directions respectively.

1 From the usual Taylor series expansion for (£, ) about § = 0.
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In summary then, the numerical procedure was as follows.

(i) The parameters R, £, %, k, Q, « and f were specified a priori, together with
the y,, the various acceleration parameters of the ADI scheme, and #nax, the
maximum residual convergence criterion.

(ii) Initial values were estimated for 4 and B in (2.9) and for the J) and
® fields.

(iii) The J) field was converged to the present accuracy using the ADI scheme
and the ‘known’ vorticity.

(iv) @,; was calculated from (2. ;7 ).

(v) Using the new value for ¢, one SOR pass was made on the vorticity
equation to obtain &mev,

(vi) 4 and Bin (2.9) were calculated from (2.5) using &%, and a new value of
;ﬁmj was stored.

(vii) The (I) and & fields were tested for convergence, which required that

|8;;] < #max everywhere
or, in a few cases, that

|Sij/@ij| < gmax, I‘ ij/‘ﬁijl < gmax,
where S;; is the residual of the corresponding equation and Zmax typically
equalled 10-5. The iteration was of course continued until the above criterion was
satisfied.
(viii) After a convergent solution had been obtained various consistency checks,

to be discussed in the next section, were carried out and the dimensionless torque
T exerted on the cylinder by the fluid was computed from

7= —%{2(9—%)+jola(o,n)dn}. (2.12)

For the case in which a zero-torque solution was desired, a new value for Q was
estimated and the whole iteration repeated until the bracketed term in (2.12)
became less than 10-3.

Listed in table 1 are the numerical values of the various parameters used to
obtain a converged solution for 0-047 < R < 70.

3. Some unusual numerical difficulties

A number of difficulties were encountered during the course of this investiga-
tion which appear to be peculiar to this type of flow problem and, therefore, are
worth mentioning.

First of all, owing to the periodicity of the stream-function field, the ADI
iteration scheme gave rise to a matrix H in (2.11) which is singular. This can be
seen by noting that all the elements of H are zero except for those along the
diagonal, which are equal to 2, those along the two off-diagonals, which equal — 1,
and the two elements in the lower left-hand and upper right-hand corners, both
of which equal —1. Fortunately though, (2.11) involves not H by itself, but
rather H + 1, with 10-2 < y, < 3-0, whose inverse was obtained using a routine
given by Evans (1971).
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Another difficulty arose from the presence of large velocities, increasing linearly
with r, far from cylinder. Specifically, since the convective terms of the vorticity
equation contain first derivatives of & multiplied by the free-stream velocity
components }7 e sin 27y and 7 e27¢ sin? 779, use of the standard central-difference
formula for these first derivatives, asis the general practice with elliptic equations,
would have violated two of the requirements needed to assure the convergence of
theiteration scheme (Mitchell 1969, p. 144),in that the expression for the vorticity
at a point as a linear combination involving its nearest neighbours would have
contained negative coeflicients at large £ and the difference-operator matrix
would not have been diagonally dominant. Both of these difficulties were solved
through the use, in lieu of central differences, of ‘first-order accurate ’ expressions
involving upstream information for the first derivatives of vorticity in the region
far from the cylinder where the free-stream velocities dominate the inertia terms.
This was not a surprising remedy because this type of finite differencing is a
standard one for parabolic equations in which the convective terms dominate.

The third difficulty resulted from the fact that, with increasing Reynolds
number, the region of closed streamlines became very thin, which meant that the
grid spacing in the £ direction had to be chosen fine enough near the cylinder in
order that the derivatives would be approximated properly. Thus, for B > 20,
two grid spacings &, and k, were used, the former corresponding to the region
adjacent to the cylinder and the latter to the remaining portion of the flow field,
but since the discontinuity in the spacing introduced additional truncation errors
in the second derivatives, the ratio k,/k, was held to a value of 2 or 3 (Forsythe &
Wasow 1967, p. 188). This complication, along with the decision to retain the
calculated values for (’i) and @ in the high-speed core, significantly reduced the
maximum Reynolds number for which a reliable solution could be obtained. For
example at E = 70, 16560 grid points were used in the flow field and 4200
iterations were required {or 1-5h of CDC 7600 computer time) before a convergent
solution was attained.

4. Consistency tests and error-analysis results

After a convergent solution for zero torque had been obtained, the following
consistency tests were performed to determine the reliability of the results.

(i) The value &, of £ at the outer boundary was increased by a factor of
nearly 2 and the coefficients 4 and B from (2.5) were compared with the earlier
values. As expected, very little change in the coefficients was found from this
test since the major contribution to the integrals occurs near the cylinder, the
vorticity wake contributing a negligible amount. Actually, after the solutions had
been converged, it was found that the grid structure far from the cylinder, with
A growing as r, was too coarse relative to the thickness of the vorticity wake,
and thus, the vorticity in this region was found to be significantly smaller than
should have been the case. Fortunately, this error should have had little effect
on the solution near the cylinder, i.e. for 1 < » < 10, since the wake lies ‘down-
stream’ of the cylinder and the vorticity outside of this wake is essentially zero.

(it) A standard test of numerical difference approximations involves halving
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the grid spacing throughout the flow field and comparing the two sets of solutions.
It is then generally assumed that, if the results change only slightly, the original
grid spacing was sufficiently small accurately to approximate the derivatives.
This was found to be the case in the present work where, for R = 0-047, 1-0 and 10,
a new solution was obtained for the entire flow field with grid spacings 14 and 1k.
At the higher Reynolds numbers, the storage requirements of the computer would
not allow us to calculate anew the complete flow field, and instead a new solution
was converged only near the cylinder using grid spacings 1% and 1k and the
previously calculated values for the stream function and the vorticity at the new
outer boundary r,, = 5-0. A complete discussion of this process has been given by
Leal (1973).

(iii) The flux of vorticity (4,, following 2.1}, which should vanish for a periodic
flow, was calculated on the cylinder surface and was always found to be negligibly
small.

(iv) Another check involved computing the change in the total head 5#, where

H =p+iu.u, (4.1)

p being the pressure and u the velocity vector, along a closed path enclosing
approximately two-thirds of the flow field and consisting of two segments of
constant £ and two segments of constant 3. Clearly, a necessary condition for the
consistency of the solution is that the net change in &# along the closed path be
zero, where, from the Navier-Stokes equation

Uxw=VH+AZVxuw, (4.2)

it can easily be shown that along a path of constant %

HE) —HE,) = f g’{ L %6 1 [—a;—ﬁ+nez"§sin2my]}dg, (4.3)

“Ra Oz

1

and that for a path of constant £

M2 (1 8(1,) 9& .
-7 = — — — (O —1) |2 + et . .
#) =) = | "5 - G- | Erimertsnom|jan @4
In the present case the sum of the head losses for the closed path was found to be
always very small, i.e. the total head loss was approximately 1-2 9, of the average
magnitude for the four segments of the curve.

(v) It can be shown that the dimensionless torque 7' can be computed from

A (Tlay @y 1y 18y ay
T—ﬁfo [;5;‘5;2'*";@5 R?Eﬁﬁ]‘w’ (4.5)

where the integration is along any path of constant » > 1. The above integral,
which reduces to (2.12) when » = 1, was evaluated for various r ranging from
5 to 8, and was always found to lie within a few per cent of its value as obtained
from (2.12).

An approximate error analysis was performed on the solution at K = 10 and
70 to determine the discretization error. It was concluded that, near the cylinder,
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Ficure 4. The angular speed of a freely rotating eylinder at moderate R.

where central differences were employed, the maximum error in the vorticity
field was 1 9%, and in the stream-function field 0-3 %, at B = 10, and 0-2 9%, and
0-05 %, respectively, at B = 70. Far from the cylinder, where larger truncation
errors are created owing to the use of upstream differences to approximate the
first derivatives of vorticity, the maximum error in the vorticity field was 6 %,
and in the stream-function field 0-3 9, at B = 10, and 4 9, and 0-1 9/, respectively,
at R = 70. All these errors refer to the ‘deviatoric’ field & and .

5. Results for zero torque

Using the technique described above, numerical solutions to the Navier—
Stokes equations were obtained at Reynolds numbers of 0-047, 1-0, 10, 20, 30, 40
and 70. As seen in figure 4, Q2 was found to decrease monotically with R, which
was to be expected for the reasons given in the introduction, and to become
proportional to B4 in agreement with the predictions of a standard boundary-
layer analysis. It is surprising though to note that this last relation appears to
hold with remarkable accuracy for values of E as low as 10.

A comparison between the numerical results at B = 0-047 and the corre-
sponding ‘inner’ solution (1.6) given analytically by Robertson & Acrivos (1970)
is shown in table 2, where 0,, r, and i, are the values of the variables at the



Steady simple shear flow past a cylinder 365

Inner Numerical
Parameter solution solution
Q (for T = 0) 0-49316 0-4932
[/ 0:1755 0-1804
4, 0-0058 0-0097
Ty 2428 2-5815

TasLr 2. Comparison of results at B = 0-047

stagnation points, and in figures 2 and 5 (@), whence it is evident that these agree
closely for » < 4-0 and that, as expected, the inner solution becomes inaccurate
for large r. Note also the existence of a stagnation point in the flow, marked by
a cross in figure 5(a), which is a saddle-point in the stream-function field and a
characteristic feature of all solutions for non-zero E.

The evolution of the flow and the equi-vorticity pattern with increasing R is
depicted in figures 5-8%, from which it becomes apparent that, in at least a
qualitative sense, many of the gross aspects of the flow approach those of the
inviscid solution (1.9), with b = %, shown in figure 3. To illustrate further this
similarity the streamlines separating the forward from the returning flow have
been plotted in figures 9 and 10, the former containing the sets for B = 0-047, 1-0
and 10, the latter those for R = 10, 20, 40, 70 and oo, with B = co denoting the
inviscid solution. This last plot also depicts the growth of the region of return
flow at large distances from the cylinder. It is surprising to note that the width of
this wake at a given large r reaches a maximum at R ~ 20 and then decreases
monotonically with R towards that for the inviscid solution.

Another interesting plot is that in figure 11, where the calculated values for
A and B, the coefficients of (2.9), and the value of ¥ at r,, = 30 are shown as
functions of R together with their corresponding limiting forms for small and for
large R obtained, respectively, from the ‘outer’ solution of Robertson & Acrivos
(1970) and from (1.9) with b = 1. Again it is evident that the numerically deter-
mined coefficients appear to approach those of the inviscid solution as B > co.
Note that the circulation around a circle of large », which is proportional to the
magnitude of B, has a maximum at a Reynolds number of approximately 4.

The major differences between the numerical results at the higher Reynolds
numbers and those of the R = oo solution occur, of course, near the cylinder and
specifically within the region of closed streamlines. To begin with, it is evident
from figures 5 (a), 6 (@) and 8 (a) that the streamline pattern obtained numerically
has a single stagnation point in the half-plane at a value of @ = 6,, which, as shown
in figure 12, appears to asymptote to 20°, in contrast to the two stagnation points
of the inviscid solution, which lie on the cylinder at 0 = 4 45°. It is of interest
though that J,, the distance of the numerically determined stagnation point from
the surface of the cylinder, and ¥, the value of the stream function at that point,
both approach zero, approximately as R—* and R-1, respectively, in agreement

1 The thinness of the region rendered it impossible to draw the limiting closed streamline
around the cylinder for B = 70.
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R = 0-047 and Q = 0-4932, from numerical caleulations.
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Fiaure 9. The location of the dividing streamline for
0-047 < R < 10 and for zero torque.

with the predictions of boundary-layer theory and the fact that Q is proportional
to R-3.

The most significant difference between the numerical calculations and the
inviscid solution, however, is brought out by the corresponding pressure profiles
on the cylinder, which are plotted in figures 13 and 14 as a function of 4, with p
the dimensionless pressure relative to that at € = 17, i.e. the relative pressure
divided by pS%a?, p being the density and 7 = pR. Clearly, the adverse pressure
gradient impressed on the flow near the cylinder at B = 40 and 70 is much less
than that for the inviscid solution. Another difference is that whereas, as men-
tioned in the introduction, a standard boundary-layer calculation using the
inviscid pressure profile would predict the occurrence of boundary-layer separa-
tion at & = 45° £ 36°, no ‘separation’ is evident in the numerical solutions even at
B = 70. Of course, one might be tempted to predict that the agreement between
any new numerical results and those of the invisecid solution plus its associated
boundary layer would become noticeably better with increasing £, but unfortu-
nately, at this time, it is not certain that this in fact will be the case.

6. Results for Q = 0 and boundary-layer calculations

Since, as was remarked in the previous section, the numerical solution for zero
torque did not show the expected presence of boundary-layer separation even af
R = 70, the Navier-Stokes equations were solved numerically at R = 0-047, 1-0,
10, 20, 40 and 70, but with Q = 0, in order to find out whether the absence of
separation in the former case was due, perhaps, to the non-zero rotational velocity
of the eylinder. Again, however, no separation was observed.

Briefly, the overall flow pattern was found to be similar to that of the inviscid
solution, figure 3, as well as to that of the Stokes solution with Q = 0 given by
Robertson & Acrivos (1970), in that it contained two stagnation points on the
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F1eure 10. The location of the dividing streamline for zero torque at small, intermediate
and large distances from the cylinder surface. —A—, R = 0-047; —[]—, B = 1.0; - ——,
RrR=100;----, R=200; —.—, R =40-0; — x—, R =70:0; ——, R = 0.

surface of the cylinder plus an open wake. It is of interest that these stagnation
points are located at 6, = + 30° when R =0, at 0, = + 45° according to the
inviscid solutions, but at |0,| > 45°for B > 20. Thus, the curve in figure 15, where
05 (0; ) denotes the position of the stagnation point in the first (fourth) quadrant,
approaches the 45° asymptote from above.

In spite of the absence of closed streamlines near the cylinder, however, the
pressure profile at » = 1 for a given R was found to be essentially the same as that
for the earlier solution with zero torque, a fact illustrated in figure 14 for R = 70.

24-2
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Ficure 14. Pressure on the surface of the cylinder relative to p at @ = }m,

for 10 < R < 70, and for zero torque except where noted Q2 = 0.
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FicUre 15. The 0 co-ordinate of the point of intersection of the ¥ = 0 curve with the surface
of the eylinder (a stagnation point). O, 0, for 0 < 8 < 4m; [, 07, for —3mr <0 < 0. Q= 0.

It is perhaps worth reporting that, although no boundary-layer separation was
encountered in the numerical solution of the Navier—Stokes equations for values
of B up to 70, a solution of the boundary-layer equations using the pressure
profile of figure 14, corresponding to R = 70 and Q = 0, produced separa-
tion at 6 = 66-6°.1 This suggests that, in this case at any rate, higher-order
boundary-layer effects are significant even at B = 70, which, of course, is hardly
surprising.

Finally, the dimensionless torque 7" in (2.12), which equals 27/R as R — 0 and is
O(R?) for R > 1, is shown in figure 16, where the two limiting curves are con-
nected by a dashed line in the transition region 1 < B < 10.

7. Conclusions

It is evident from what has been presented that the effects of inertia forces on
the shear flow past the freely rotating cylinder are quite dramatic at even small
Reynolds numbers and result, for example, in the appearance of a stagnation
point in the flow, a reduction in the size of the closed-streamline region and in the
creation of a ‘wake’ when the stream function attains negative values. It would
be expected, therefore, that this altered flow field will significantly change the
rates of heat and mass transfer from the cylinder, compared with those obtained
from the R = 0 flow.

1 The method employed to solve the boundary-layer equations was that of Smith &
Clutter (1963) with an implicit iterative scheme replacing the predictor—corrector, three-
point interpolation procedure.
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The fact that in the freely rotating case Q is proportional to B~% for R > 10
would lead one to expect that the flow would attain a boundary-layer-type
structure for values of B not much larger than O(1). However, although this was
found to be the case in many respects, the computed pressure profile is seen to
deviate substantially from that of the inviscid solution. Also, even at R = 70, the
numerical results did not show any flow separation from the surface of the
cylinder as would be expected on the basis of a boundary-layer calculation using
either the inviscid or the numerically determined pressure profile. Thus, it would
appear that a Reynolds number of 70 is not quite large enough to reveal
unambiguously the nature of the steady flow as R — oo, although there are
indications that at least some of the features of such an asymptotic flow pattern
will be similar to those of the symmetric inviscid solution (1.9) with b = 1.
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