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Steady simple shear flow past a circular cylinder at 
moderate Reynolds numbers: a numerical solution 
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The two-dimensional steady flow of an incompressible viscous fluid past a circular 
cylinder, placed symmetrically in a simple shear field, has been studied for both 
the stationary and the freely rotating case by solving numerically the Navier- 
Stokes equations for values of the Reynolds number R in the range 

0.047 < R < 70. 

At R = 0.047, the present results are in substantial agreement with the analytic 
small-R perturbation solution given by Robertson & Acrivos (1  970). Inertia 
effects were found, however, to play a significant role even at R = 1, and hence 
the calculated flow pattern for R 2 1 differs significantly from that of the 
creeping-flow solution. Specifically, for the freely rotating case, the region of 
closed streamlines decreases rapidly in extent with increasing R, two sym- 
metrically placed wakes are formed on either side of the cylinder and the dimen- 
sionless rotational speed of the freely suspended cylinder decreases as R-4. In  
fact, for a value of R as low as 70, many of the gross features of the flow are 
surprisingly similar to those described by an inviscid solution except for the 
difference in the two sets of pressure profiles and the fact that the numerical 
results do not as yet exhibit the expected flow separation on the surface of the 
cylinder. 

1. Introduction 
Problems involving the motion of small spheres and cylinders freely suspended 

in a non-uniform flow field have received considerable attention in the last few 
years, not only because of their importance from a fundamental point of view, 
but also because their solution constitutes the first step in understanding many 
complex phenomena such as the flow of red cells in the blood and of fibre suspen- 
sions in paper making, the lateral migration of solid as well as deformable particles 
suspended in Poiseuille flow, the rheology of emulsions and the associated problem 
of mass transfer between the continuous and discrete phases, plus many more. 
Up to now, however, most of the studies on the subject, experimental as well as 
theoretical, appear to have been limited to  small values of the Reynolds number, 

t Present address, Atlantic Richfield Company, Dallas, Texas. 
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FIGURE 1. The undisturbed simple shear flow and the location 
of the cylinder in the flow field. 

the result being that many of the effects arising from the presence of large inertia 
forces have remained unexplored. Here we attempt to fill this void for the case 
of a circular cylinder freely suspended in a simple shear flow, by presenting 
numerical solutions to the Navier-Stokes equations for values of the shear 
Reynolds number up to 70. 

The system t o  be considered, shown schematically in figure 1, consists of a 
circular cylinder of radius a placed symmetrically in a simple shear flow whose 
rate of strain is denoted by S. The Reynolds number R is defined as R E Sa2/v, 
with v the kinematic viscosity of the fluid, and all velocities and lengths are 
rendered dimensionless using, respectively, Sa as the characteristic velocity and 
a as the characteristic length. Thus, the steady flow obeys the familiar dimen- 
sionless Navier-Stokes equations in terms of the stream function $ and the 
vorticity o 

plus the boundary conditions 

(1.1) V2$ = -0, DwlDt = R-'V2w, 

as well as the periodicity condition 

which arises from the symmetry of the flow. In  the above, r and 6' are the con- 
ventional cylindrical polar co-ordinates, with B increasing counter-clockwise as 
shown in figure 1.  Finally, the requirement of zero torque can be shown to 
reduce to 

Q = - uo = a$/ar at  r = 1 being the dimensionless speed with which t'he cylinder 
rotates. 

The creeping-flow solution to the above, given by 

(1.5) $o = ~ r 2 s i n 2 6 ' - ~ ~ l + ( r - - 2 - 2 ) c o s ~ B ) ,  Q = 2, 1 
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is well known, and the predicted flow pattern has been verified experimentally, 
for small values of R, by Cox, Zia & Mason (1  968) and by Robertson & Acrivos 
(1970). For larger R, however, essentially nothing has been reported to date 
regarding the structure of the flow, except for the analysis by Robertson & 
Acrivos (1970), where a solution to (1.1)-( 1.3) was developed for small but finite R. 
This was accomplished using the technique of matched asymptotic expansions, 
which led to the following two expressions for the stream function $ satisfying 
the appropriate matching requirement in the overlap region. 

(a)  An ‘inner’ solution for 1 6 r 6 O(R-4): 

9 = @&, 8)  + R lnB$l(r, 6) +R@2(r, 8)  + o(R) ,  (1.6) 
where analytic formulae were given by Robertson & Acrivos for the functions 
and $2. 

( b )  An ‘outer’ solution for O(R-4) 6 r < 00 of the form 

R$ = +p2sin28+RY(p,8)+O(R21n R), p E R4r, 

when Y ( p ,  8) is the solution to 

which matches with (1.6) and satisfies the last two conditions in (1.2) a s p  + 00. 

Moreover, it was shown by Robertson & Acrivos that, for a freely rotating 
cylinder, L2 = +{l - 0.2886R + O(R*ln R)}. 

It is recognized, of course, that the above expressions, being expansions of the 
appropriate exact solution about R = 0, may not provide a reliable description 
of the flow beyond a certain small value of R. Nevertheless, they do suggest certain 
trends in the evolution of the flow pattern with increasing R which, as will be 
seen later, are borne out to a surprising extent by the numerical solution even 
for R as large as 70. 

Specifically, if (1.6)) the stream function for the ‘inner ’ solution, is evaluated 
for R = 0-047, the resulting streamline pattern, depicted in figure 2, is seen to 
differ significantly from that arising from the creeping-flow solution (1.5) (cf. 
figures 8 and 9 of Robertson & Acrivos). For example, the region of closed stream- 
lines, which is known to dominate the rate of heat or mass transfer from the 
cylinder a t  large values of the ?&let number (Prankel & Acrivos 1968), is now 
finite rather than infinite in extent and is followed, on either side, by a wake, 
i.e. a region of negative @, whose width is monotonically increasing with r ;  in 
fact, the pattern is qualitatively similar to that arising under creeping-flow 
conditions when the cylinder is in a state of hindered rotation, i.e. when Q < + 
(cf. figure 7 of Robertson & Acrivos). It is moreover evident from (1.8) that, 
according to the perturbation solution, Q should be expected to decrease mono- 
tonically with R and to become small in relation to the vorticity of the undisturbed 
shear flow when Ris not much larger than O( 1) .  Thus, the analysis by Robertson & 
Acrivos would tend to indicate that, even for moderate values of R, the flow will 
be dominated by inertia effects and that its structure will bear little resemblance 
to that of the R = 0 solution as given by (1.5). 

(1.8) 

23-52 
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FIGURE 2. Stream-function field for zero torque, R = 0.047 and !2 = 0.49316, 
obtained analytically from the inner solution. 

It is also of some interest to  solve the inviscid form of (1.1) in the hope that a t  
least some of the features of this solution will be retained by the true streamline 
pattern when R B 1. With the viscous terms in (1.1) set, then, identically equal 
to  zero, this pair of equations reduces to  

w - 1 = - V2$, 

whose solution satisfying (1.2) is 

3 = i t - 2  sin2 0 - $ - b In r + ( 4r2)-I cos 213, (1.9) 

b being a constant. To obtain its value, as well as that of Q, it is necessary to  
examine the boundary-layer equations, which describe the flow in the immediate 
vicinity of the cylinder, subject to  the conditions 

us = - i2 at r = 1, us -+ u,(@ a t  the edge of the boundary layer, 

where, in view of (1.9), 

Fortunately, a solution, which would be cumbersome to obtain, is not required 
in the present case, because the symmetric flow about 8 = 0, obtained by setting 
b = 4, automatically satisfies the zero-torque condition (1.4) with Q = 0. To be 
sure, it is unlikely that this inviscid solution, which is sketched in figure 3, 
correctly represents the true flow pattern a t  high R, since a conventional 

u,(O) = cos2o-(g-b). 
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FIGURE 3. The inviscid solution (1.9) with b = i. 

boundary-layer calculation with Q = 0 and u,(0) = cos 28 = sin (20 + in) leads 
to the prediction (cf. Schlichting 1968, p. 161) that the boundary layer will 
separate a t  8 = 45" 36". Nevertheless, it is of some interest that the gross 
features of this solution, for example a zero value for Q) plus the presence of two 
wakes whose width increases logarithmically with r ,  are consistent with the 
trends predicted by the small-R analysis discussed above. 

On the basis of both the small-R and the inviscid solutions, one would expect 
therefore that, with increasing R, Q should decrease monotonically to zero and 
that a wake, qualitatively similar to that shown in figure 3, should form, extending 
from almost the surface of the cylinder to infinity. It will be seen that, indeed, the 
numerical calculations are in accord with these predictions. 

2. The numerical technique 
Before proceeding with the description of our numerical technique for solving 

(1 .1)  subject to (1.2)-( 1.4)) it is of some importance to examine in more detail the 
expected behaviour of the solution as r+co. To this end we note that, far from 
the cylinder, the function 6 = w +  1 satisfies the first relation in (1 .7 ) ,  whose 
fundamental solution vanishing a t  infinity is (Bretherton 1962) 

+") 
= s:' 2t( 1 + +#)B exp - (4t(  I + &t2)  4t 

dt (S - 8 Yt)2 
(2.1) 
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with <-+ - Inp -I- 1.372 asp  E (X2 + Y2)f -+ 0. A vorticity distribution of the form 
D = A,<, with A ,  a proportionality constant, will arise then from a source of 
vorticity a t  the surface of the cylinder. One can easily show by application of the 
divergence theorem to the vorticity equations in (1 .  1 )  and (1 .7)  plus knowledge of 
the form of < as p -+ 0 that 

I 2n ad 
A0 = -Gjo (5) r=l dB7 

which is clearly zero. Therefore, since D must, in addition, satisfy the periodicity 
condition ( 1 . 3 ) ,  we conclude that far from the cylinder 

D-+A,a2</aX2 as r+co, 

It has already been shown by Bretherton (1962), however, that, as r -+ 00, 

<-+ 3 f / Y 2 + 0 ( Y - 4 )  if X / Y  = O(1) 

A,  being an undetermined constant. 

and < -+ (3H/X%) I (&)  + O(X-3) if a = Y/Xf = O( l ) ,  

I 

with 

and thus, in the present case, D remains significant only within a ‘vorticity ’ wake 
of dimensions Y = O(Xh), where 

0 = (34A2/27,Y~){(+a6+ 10a3+ 3 0 ) I - ( 4 p 4 + 8 ~ ) ) .  ( 2 . 2 )  

The term in braces has a maximum a t  a = 2.45 and hence, for a given large x, 
D will attain its largest absolute value, proportional to x-Q, when 

y = ymax = 2*45x+/R+. (2.3) 

It is evident, of course, that the above conclusions apply irrespective of the 
magnitude of R, provided that x is sufficiently large. 

It is also clear from ( 2 . 2 )  that, for fixed r ,  the change in the stream function 
across the vorticity wake will be O(r-,) as r -+ 00, and hence, for purposes of 
determining $ far from the cylinder, the presence of this wake can be ignored. 
Thus, as r -+ 00, @ satisfies Laplace’s equation and, in view of (1.2) and (1 .3 ) ,  
assumes the form 

y? --f $r2 sin28 + Bln r +A. + O( l) ,  (2.4) 

where it can be shown, by integrating the first equation in (1 .1)  with respect to 8 
from -in to +n and applying (1 .2)  to the solution of the resulting ordinary 
differential equation, that 

B = Q - - + + S r o g ( t ) d t ,  A = - glntdt-a, with g ( r )  = 
1 

(2 .5 )  

We next outline the method of solution. After the customary change of 
We note that d and B exist, since, in view of ( 2 . 2 ) ,  g becomes O(r-s) as r --f 03. 

variables from ( r ,  8) to (5, v ) ,  with 

5 E n-llnr, q --= O / T ,  
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the pair of equations (1.1)) in terms of the ‘deviatoric ’ dependent variables $ and 
G,t was cast into a finite-difference form using standard formulae of second-order 
accuracy except as noted in $ 3 ,  with boundary conditions 

(a )  kli = -Qsin2nyi, (3.6) 
h 

2 

k2n2 kn (2.7) 
2 A  

( b )  Glj = (1  - 2 sin2nyj) -- [@2j + 4 sin2 nyj] +- (Q - sin2rvj),$ 

(c) Gmj = 0,  where &, is the location of the artificial outer boundary, (2.8) 
(d )  $mj = BnCm+AA, (3 .9)  

where A and B were calculated from (2.5)) and 
( e )  the periodicity requirement (1.3) on 5 and G. 
Thus, in matrix notation, (1 .1)  becomes 

( H + V ) $  = f, (2.10) 

together with a similar expression for the vorticity equation, where H 4 and V+ 
are, respectively, the finite-difference approximations to a2@/aq2 and a2@/at2,  
and f is the forcing matrix containing G, as well as the boundary conditions. With 
f assumed known, (2.10) was then solved using the alternating direction implicit 
(ADI) iteration scheme (Wachspress 1966, p. 173), according to which 

h 

the residue XU+l being computed from 

(H+yj,I)S* = - (H+V)&+f ,  (V+y,I)S”+’= ( Y ~ + Y ~ , ) I S * ,  (2.11) 

where v is the iteration index, I is the unit matrix and yv and yh are acceleration 
parameters. A set of four AD1 parameters w:s employed in the cyclical manner. 

After calculating a convergent solution for + corresponding to a given vorticity 
distribution, an improved vorticity field was obtained from the finite-difference 
form of the vorticity equation in (1.1) using a single successive over-relaxation 
(SOR) pass per overall iteration. Specifically, the new field was determined one 
column at a time, i.e., with S again denoting the residual and equal to, in this case, 
Gnew - Gold, Sii was computed for all i a t  a given j .  The vorticity was calculated 
a column at a time (constant j) and the field swept in the direction of flow 
(increasingj). Also, in keeping with the standard practice in SOR iterations, new 
information was continuously fed into the calculations in that, when computing 
thejth vorticity column during a given pass, the vorticity in the (,j - I ) th  column 
was replaced by 

G:,l,”-1+ 

was set equal to 1.2 in all cases except when R = 70, where, to maintain 
stability, it was reduced to 0.05. Finally, the ‘new’ vorticity field was obtained 
from 

the values of the relaxation pa’rameter a that were used are listed in table I. 

grid spacings in the 5 and 7 directions respectively. 

;new = &Old + as ; 

t &tj z $(ti, q j )  and bjtj 

$ From the risiial Taylor series expansion for + ( E ,  q )  about 4: = 0. 

& ( E d ,  q j ) ,  where Ci z ( i  - 1) k and qj  ( j  - 1) h, k and h being the 
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In  summary then, the numerical procedure was as follows. 
(i) The parameters R, tm, h, k, R, a! and /3 were specified apriori, together with 

the yi, the various acceleration parameters of the AD1 scheme, and 9;max,  the 
maximum residual convergence criterion, 

(ii) Initial values were estimated for A and B in (2.9) and for the 5 and 
Q fields. 

(iii) The 5 field was converged to the present accuracy using the AD1 scheme 
and the 'known' vorticity. 

(iv) OIj was calculated from (2.7). 
(v) Using the new value for 5, one SOR pass was made on the vorticity 

(vi) A and B in (2.9) were calculated from (2.5) using Q""", and a new value of 

(vii) The 5 and Q fields were tested for convergence, which required that 

ISij] < g m a x  everywhere 

equation to obtain QUOw. 

gnLj was stored. 

or, in a few cases, that  

ISij/oijI < g m a x ,  lSij/$ijl < g r n a x ,  

where Sij is the residual of the corresponding equation and 9 m a x  typically 
equalled The iteration was of course continued until the above criterion was 
satisfied. 

(viii) After a convergent solution had been obtained various consistency checks, 
to be discussed in the next section, were carried out and the dimensionless torque 
T exerted on the cylinder by the fluid was computed from 

(2.12) 

For the case in which a zero-torque solution was desired, a new value for R was 
estimated and the whole iteration repeated until the bracketed term in (2.12) 
became less than 

Listed in table 1 are the numerical values of the various parameters used to  
obtain a converged solution for 0.047 < R 6 70. 

3. Some unusual numerical difficulties 
A number of difficulties were encountered during the course of this investiga- 

tion which appear to be peculiar to this type of flow problem and, therefore, are 
worth mentioning. 

First of all, owing to the periodicity of the stream-function field, the AD1 
iteration scheme gave rise to a matrix H in (2.11) which is singular. This can be 
seen by noting that all the elements of H are zero except for those along the 
diagonal, which are equal to 2, those along the two off-diagonals, which equal - 1, 
and the two elements in the lower left-hand and upper right-hand corners, both 
of which equal - 1. Fortunately though, (2.11) involves not H by itself, but 
rather H + yh  I, with < yh 6 3.0, whose inverse was obtained using a routine 
given by Evans (1971). 
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Another difficulty arose from the presence of large velocities, increasing linearly 
with r ,  far from cylinder. Specifically, since the convective terms of the vorticity 
equation contain first derivatives of & multiplied by the free-stream velocity 
components +re2*[ sin 27rq and rezn[  sinznq, use of the standard central-difference 
formula for these first derivatives, as is the general practice with elliptic equations, 
would have violated two of the requirements needed to assure the convergence of 
the iteration scheme (Mitchell 1969, p. 144), in that the expression for the vorticity 
at a point as a linear combination involving its nearest neighbours would have 
contained negative coefficients at large ,$ and the difference-operator matrix 
would not have been diagonally dominant. Both of these difficulties were solved 
through the use, in lieu of central differences, of ‘ first-order accurate ’ expressions 
involving upstream information for the first derivatives of vorticity in the region 
far from the cylinder where the free-stream velocities dominate the inertia terms. 
This was not a surprising remedy because this type of finite differencing is a 
standard one for parabolic equations in which the convective terms dominate. 

The third difficulty resulted from the fact that, with increasing Reynolds 
number, the region of closed streamlines became very thin, which meant that the 
grid spacing in the 6 direction had to be chosen fine enough near the cylinder in 
order that the derivatives would be approximated properly. Thus, for R 20, 
two grid spacings k, and k, were used, the former corresponding to the region 
adjacent to the cylinder and the latter to the remaining portion of the flow field, 
but since the discontinuity in the spacing introduced additional truncation errors 
in the second derivatives, the ratio k,/k, was held to a value of 2 or 3 (Forsythe & 
Wasow 1967, p. 188). This complication, along with the decision to retain the 
calculated values for 4 and & in the high-speed core, significantly reduced the 
maximum Reynolds number for which a reliable solution could be obtained. For 
example at R = 70, 16 560 grid points were used in the flow field and 4200 
iterations were required (or 1.5 h of CDC 7600 computer time) before a convergent 
solution was attained. 

4. Consistency tests and error-analysis results 
After a convergent solution for zero torque had been obtained, the following 

consistency tests were performed to determine the reliability of the results. 
(i) The value trn of at the outer boundary was increased by a factor of 

nearly 2 and the coefficients A and B from (2.5) were compared with the earlier 
values. As expected, very little change in the coefficients was found from this 
test since the major contribution to the integrals occurs near the cylinder, the 
vorticity wake contributing a negligible amount. Actually, after the solutions had 
been converged, it was found that the grid structure far from the cylinder, with 
A6 growing as r ,  was too coarse relative to the thickness of the vorticity wake, 
and thus, the vorticity in this region was found to be significantly smaller than 
should have been the case. Fortunately, this error should have had little effect 
on the solution near the cylinder, i.e. for 1 < r < 10, since the wake lies ‘down- 
stream’ of the cylinder and the vorticity outside of this wake is essentially zero. 

(ii) A standard test of numerical difference approximations involves halving 
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the grid spacing throughout the flow field and comparing the two sets of solutions. 
It is then generally assumed that, if the results change only slightly, the original 
grid spacing was sufficiently small accurately to approximate the derivatives. 
This was found to be the case in the present work where, for R = 0.047,1-0 and 10, 
a new solution was obtained for the entire flow field with grid spacings +h and Qk. 
At the higher Reynolds numbers, the storage requirements of the computer would 
not allow us to calculate anew the complete flow field, and instead a new solution 
was converged only near the cylinder using grid spacings Qh and $k and the 
previously calculated values for the stream function and the vorticity a t  the new 
outer boundary rm z 5.0. A complete discussion of this process has been given by 
Leal (1973). 

(iii) The flux of vorticity (A,,, following 2.1), which should vanish for a periodic 
flow, was calculated on the cylinder surface and was always found to be negligibly 
small. 

(iv) Another check involved computing the change in the total head .X, where 

.X =p++u.u ,  (4.1) 

p being the pressure and u the velocity vector, along a closed path enclosing 
approximately two-thirds of the flow field and consisting of two segments of 
constant 5 and two segments of constant 7. Clearly, a necessary condition for the 
consistency of the solution is that the net change in Z along the closed path be 
zero, where, from the Navier-Stokes equation 

u x w  = V 3 + 9 ' - 1 V x w ,  (4.2) 

it can easily be shown that  along a path of constant 7 

and that for a path of constant 5 

In the present case the sum of the head losses for the closed path was found to be 
always very small, i.e. the total head loss was approximately 1-2 yo of the average 
magnitude for the four segments of the curve. 

(v) It can be shown that the dimensionless torque T can be computed from 

where the integration is along any path of constant r 2 1. The above integral, 
which reduces to (2.12) when r = 1, was evaluated for various r ranging from 
5 to 8, and was always found to lie within a few per cent of its value as obtained 
from (3.13). 

An approximate error analysis was performed on the solution a t  R = 10 and 
70 t o  determine the discretization error. It was concluded that, near the cylinder, 
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R 

10 

R = Sa21v 
I00 

FIGURE 4. The angular speed of a freely rotating cylinder a t  moderate R.  

where central differences were employed, the maximum error in the vorticity 
field was 1 yo and in the stream-function field 0-3 % at R = 10, and 0.2 yo and 
0.05 yo, respectively, at R = 70. Far from the cylinder, where larger truncation 
errors are created owing to the use of upstream differences to approximate the 
first derivatives of vorticity, the maximum error in the vorticity field was 6 yo 
andin the stream-function field 0.3 % a t  R = 10, and 4 % and 0.1 %,respectively, 
at R = 70. All these errors refer to the ‘deviatoric’ field 0 and $. 

5.  Results for zero torque 
Using the technique described above, numerical solutions to the Navier- 

Stokes equations were obtained at Reynolds numbers of 0.047, 1.0, 10,20, 30, 40 
and 70. As seen in figure 4, SZ was found t o  decrease monotically with R, which 
was to  be expected for the reasons given in the introduction, and to become 
proportional to R-4 in agreement with the predictions of a standard boundary- 
layer analysis. It is surprising though to note that this last relation appears t o  
hold with remarkable accuracy for values of R as low as 10. 

A comparison between the numerical results at  R = 0.047 and the corre- 
sponding ‘inner’ solution (1.6) given analytically by Robertson & Acrivos (1970) 
is shown in table 2,  where 0,) rs and 1c., are the values of the variables a t  the 
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Inner Numerical 
Parameter solution solution 

!2 (for T = 0) 0.49316 0.4932 
$S 0.1755 0.1805 
6, 0.0058 0.0097 
r S  2.428 2.5815 

TABLE 2. Comparison of results a t  R = 0.047 

stagnation points, and in figures 2 and 5 (a), whence it is evident that these agree 
closely for r < 4.0 and that, as expected, the inner solution becomes inaccurate 
for large r .  Note also the existence of a stagnation point in the flow, marked by 
a cross in figure 5 (a), which is a saddle-point in the stream-function field and a 
characteristic feature of all solutions for non-zero R. 

The evolution of the flow and the equi-vorticity pattern with increasing R is 
depicted in figures 5-8-f, from which it becomes apparent that, in a t  least a 
qualitative sense, many of the gross aspects of the flow approach those of the 
inviscid solution (1.9), with b = Q, shown in figure 3. To illustrate further this 
similarity the streamlines separating the forward from the returning flow have 
been plotted in figures 9 and 10, the former containing the sets for R = 0-047,l.O 
and 10, the latter those for R = 10, 20, 40, 70 and co, with R = co denoting the 
inviscid solution. This last plot also depicts the growth of the region of return 
flow at large distances from the cylinder. It is surprising to note that the width of 
this wake a t  a given large r reaches a maximum a t  R N 20 and then decreases 
monotonically with R towards that for the inviscid solution. 

Another interesting plot is that in figure 11, where the calculated values for 
A and B, the coefficients of (2.9)) and the value of $ at r, = 30 are shown as 
functions of R together with their corresponding limiting forms for small and for 
large R obtained, respectively, from the 'outer ' solution of Robertson & Acrivos 
(1970) and from (1.9) with b = Q. Again it is evident that the numerically deter- 
mined coefficients appear to approach those of the inviscid solution as R -+ co. 
Note that the circulation around a circle of large r ,  which is proportional to the 
magnitude of B, has a maximum a t  a Reynolds number of approximately 4. 

The major differences between the numerical results a t  the higher Reynolds 
numbers and those of the R = co solution occur, of course, near the cylinder and 
specifically within the region of closed streamlines. To begin with, it is evident 
from figures 5 (a), 6 (a) and 8 (a) that the streamline pattern obtained numerically 
has a single stagnation point in the half-plane a t  a value of 8 = 6,, which, as shown 
in figure 12, appears to asymptote to 20°, in contrast to the two stagnation points 
of the inviscid solution, which lie on the cylinder a t  8 = f 45". It is of interest 
though that a,, the distance of the numerically determined stagnation point from 
the surface of the cylinder, and ~ 8 ,  the value of the stream function a t  that point, 
both approach zero, approximately as R-4 and R-l, respectively, in agreement 

t The thinness of the region rendered it impossible to draw the limiting closed streamline 
around the cylinder for R = 70. 
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FICUEE 6 .  (a)  Stream-function field and ( b )  vorticity field for zero torque, 
R = 0.047 and a = 0.4932, from numerical calculations. 
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FIGURE 6. (a )  Stream-function field and ( b )  vorticity field for zero torque, 
R = 1.0 and = 0.438. 
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FIGURE 7. (a )  Stream-function field and ( b )  vorticity field for zero torque, 
R = 10.0 and 1;2 = 0.141. 
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FIGURE 8. ( a )  Stream-function field and ( b )  vorticity field for zero torque, 
R = 70.0 and .Q = 0.0525. 
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FIGURE 9. The location of the dividing streamline for 
0.047 < R < 10 and for zero torque. 

with the predictions of boundary-layer theory and the fact that Q is proportional 
to  R-4. 

The most significant difference between the numerical calculations and the 
inviscid solution, however, is brought out by the corresponding pressure profiles 
on the cylinder, which are plotted in figures 13 and 14 as a function of 7, withp 
the dimensionless pressure relative to that a t  0 = $T, i.e. the relative pressure 
divided by pS2a2, p being the density and 2, = pR. Clearly, the adverse pressure 
gradient impressed on the flow near the cylinder a t  R = 40 and 70 is much less 
than that for the inviscid solution. Another difference is that whereas, as men- 
tioned in the introduction, a standard boundary-layer calculation using the 
inviscid pressure profile would predict the occurrence of boundary-layer separa- 
tion a t  0 = 45" t 36", no 'separation' is evident in the numerical solutions even at  
R = 70. Of course, one might be tempted to predict that the agreement between 
any new numerical results and those of the inviscid solution plus its associated 
boundary layer would become noticeably better with increasing R, but unfortu- 
nately, a t  this time, it is not certain that this in fact will be the case. 

6. Results for Q = 0 and boundary-layer calculations 
Since, as was remarked in the previous section, the numerical solution for zero 

torque did not show the expected presence of boundary-layer separation even at  
R = 70, the Navier-Stokes equations were solved numerically a t  11 = 0.047, 1.0, 
10, 20, 40 and 70, but with D = 0, in order to find out whether the absence of 
separation in the former case was due, perhaps, to the non-zero rotational velocity 
of the cylinder. Again, however, no separation was observed. 

Briefly, the overall flow pattern was found to be similar to that of the inviscid 
solution, figure 3, as well as to that of the Stokes solution with f2 = 0 given by 
Robertson & Acrivos (1  970), in that it contained two stagnation points on the 
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FIGURE LO. The location of the dividing streamline for zero torque at small, intermediate 
and large distances from the cylinder surface. -A-, R = 0.047; -a-, R = 1.0; - - -, 
R = 10.0; .-.., R = 20.0; -.-, R = 40-0; -x-, R = 70.0; --, R = CO. 

surface of the cylinder plus an open wake. It is of interest that these stagnation 
points are located a t  0, = 5 30" when R = 0, a t  0, = k 45" according to the 
inviscid solutions, but at  l0,l > 45" for R 2 20. Thus, the curve in figure 15, where 
0: (0;) denotes the position of the stagnation point in the first (fourth) quadrant, 
approaches the 45" asymptote from above. 

In  spite of the absence of closed streamlines near the cylinder, however, the 
pressure profile at r = 1 for a given R was found to  be essentially the same as that 
for the earlier solution with zero torque, a fact illustrated in figure 14 for R = 70. 
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FIGURE 12. The value of 0 at the fluid stagnation point for 
R between 1 and 70 and at  zero torque. 
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relative to j j  at 0 = &, for 0 < R < 1-0. 
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FIGURE 15. The 0 co-ordinate of the point of intersection of the @ = 0 curve with the surfacc 
of the cylinder (a stagnation point). 0, O:, for 0 < 0 -= &; 0, BS-, for - +T < 0 < 0. R = 0. 

It is perhaps worth reporting that, although no boundary-layer separation was 
encountered in the numerical solution of the Navier-Stokes equations for values 
of R up to 70, a solution of the boundary-layer equations using the pressure 
profile of figure 14, corresponding to R = 70 and !2 = 0, produced separa- 
tion a t  8 = 66.6’.? This suggests that, in this case a t  any rate, higher-order 
boundary-layer effects are significant even at  R = 70, which, of course, is hardly 
surprising. 

Finally, the dimensionless torque T i n  (2.12), which equals 2nIR as R -+ 0 and is 
O(R-4) for R 9 I, is shown in figure 16, where the two limiting curves are con- 
nected by a dashed line in the transition region 1 < R < 10. 

7. Conclusions 
It is evident from what has been presented that the effects of inertia forces on 

the shear flow past the freely rotating cylinder are quite dramatic at even small 
Reynolds numbers and result, for example, in the appearance of a stagnation 
point in the flow, a reduction in the size of the closed-streamline region and in the 
creation of a ‘wake ’ when the stream function attains negative values. It would 
be expected, therefore, that this altered flow field will significantly change the 
rates of heat and mass transfer from the cylinder, compared with those obtained 
from the R = 0 flow. 

t The method employed to solve the boundary-layer equations was that of Smith & 
Clutter ( 1963) with an implicit iterative scheme replacing the predictor-corrector, three- 
point interpolation procedure. 
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The fact that in the freely rotating case Q is proportional to R-6 for R > i0  
would lead one to expect that the flow would attain a boundary-layer-type 
structure for values of R not much larger than O(1).  However, although this was 
found to be the case in many respects, the computed pressure profile is seen to 
deviate substantially from that of the inviscid solution. Also, even a t  R = 70, the 
numerical results did not show any flow separation from the surface of the 
cylinder as would be expected on the basis of a boundary-layer calculation using 
either the inviscid or the numerically determined pressure profile. Thus, it would 
appear that a Reynolds number of 70 is not quite large enough to reveal 
unambiguously the nature of the steady flow as R - + ~ o ,  although there are 
indications that a t  least some of the features of such an asymptotic flow pattern 
will be similar to those of the symmetric inviscid solution (1.9) with b = 4. 
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